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Abstract. Let ρ12 be an arbitrary given composite-system state (statistical operator). It is
shown that same-subsystem events imply each other state-dependently according toρ12 if and
only if they act equally in the range of the corresponding subsystem state (reduced statistical
operator). Opposite-subsystem events imply each other in the same way if and only if they
are twin events, i.e.E1ρ12 = F2ρ12. If ρ12 is a pure state, it is shown that the anti-unitary
correlation operator also plays a decisive role in the latter implication.

1. Introduction

To begin with, we give a short summary of the concepts of the state-dependent implication
in quantum logic that are required for this investigation.

Let H be the state space of a quantum system, and letP(H) be the set of all events
(projectors) inH. A (partial) order (i.e. a binary relation that is reflexive, transitive and
antisymmetric (see Birkhoff 1940)) is defined inP(H) as follows

E 6 F if EF = E. (1)

Equivalently, in terms of the ranges one hasR(E) ⊆ R(F).
Since the projectors can also be interpreted as propositions, one callsP(H) a quantum

logic, having in mind that it is a partially ordered set with ‘6’ given by (1), the so-called
absolute implicationcontained in it.

Any other implication is a relative one. It is a pre-order (a binary relation that is
reflexive and transitive, cf Birkhoff (1940)) in one of the Boolean subalgebrasB of P(H),
i.e. in the domain of definition of the relative implication. (For the necessity of restriction
to B see Herbut (1994).) Any relative implication is defined by specifying an ideal1 in B,
and by taking the corresponding factor algebraB/1 (cf Herbut 1994, 1995).

The equivalence relation (a binary relation that is reflexive, transitive and symmetric)
‘∼1’ redefines the classes in the sense that two events are equivalent if and only if they
belong to the same class. In other words, denoting by [E] the equivalence class (element
of B/1) to whichE belongs,∀E ∈ B, [E] = {F : F ∼1 E}. One has

E ∼1 F, E, F ∈ B if both EF⊥ ∈ 1 and E⊥F ∈ 1 (2)

whereE⊥ ≡ 1 − E etc.
Therelative implication‘61’ can be entirely defined in terms of the equivalence relation

‘∼1’ given by (2) and the absolute implication ‘6’ as follows:

E 61 F, E, F ∈ B, if ∃G ∈ B : G ∼1 E, and∃H ∈ B : H ∼1 F, andG 6 H. (3a)
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An important connection between ‘∼1’ and ‘61’ is given by

E ∼1 F, E, F ∈ B, if and only if bothE 61 F andF 61 E (3b)

(see Herbut (1994)).
In this study we will be mostly interested in ‘∼1’, and we will refer to it as the relation

of mutual (relative) implication.
The special case ofstate-dependent implication‘6ρ ’ is determined by any quantum

state (statistical operator)ρ in H. Let Q0 be the null projector ofρ. Then

1ρ ≡ {E : E ∈ B, E 6 Q0} (4a)

is an ideal inB, and by definition

‘ 6ρ ’ = ‘ 61ρ ’ (5)

(see Herbut (1994, 1995)). If the quantum stateρ is pure, i.e.ρ = |φ〉〈φ|, then equivalently

1|φ〉 = {E : E ∈ B, E|φ〉 = 0}. (4b)

It is noteworthy that in general the quantum state is a mixture of pure states:

ρ =
∑
n

wn|ψn〉〈ψn| (6)

but the state-dependent implication ‘6ρ ’ is determined only by its null projector

Q0 = 1 −
∑
n

|ψn〉〈ψn| (7)

(it is here assumed that (6) is a spectral form ofρ; otherwise, (6) can be more general).
Now we derive a result that we will make use of below.

Lemma 1. Let ρ be a state (statistical operator) andB a Boolean subalgebra of the
quantum logicP(H) of a quantum system. Then two events (projectors)E,F ∈ B imply
each other state-dependently according toρ, i.e.E ∼ρ F , if and only if

EQ = FQ (8)

whereQ is the range projectorof ρ.

Proof. (a) We assume state-dependent equivalence ofE andF according toρ. In view
of (2) and (4a), this takes the following explicit form:

E(1 − F)(1 −Q) = E(1 − F)

(1 − E)F(1 −Q) = (1 − E)F.

These relations simplify down to

EQ = EFQ FQ = EFQ

implying (8).
(b) We assume the validity of (8). ThenEQ = EFQ, and, reading the above argument

backwards, i.e. adding the required terms, we obtain

E(1 − F)(1 −Q) = E(1 − F)

or symbolically,EF⊥ 6 (1−Q). Symmetrically, (8) impliesFQ = EFQ, and the addition
of the required terms leads toE⊥F 6 (1−Q). In view of (2) and (4a), we haveE ∼ρ F . �
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2. A summary of the canonical entities of distant correlations in mixed and pure
composite-system states

Now, we outline some basic concepts of canonical distant-correlation theory, some of which
were developed in previous work (Herbut and Vujičić 1976, Vujǐcić and Herbut 1984).

Any two-subsystem (e.g. two-particle) composite-system state|9〉12 (∈ (H1 ⊗H2)) can
be equivalently expressed as an antilinear Hilbert–Schmidt operatorAa mapping the state
space (Hilbert space)H1 of the first subsystem into that of the other. Namely, these operators
form one realization of the tensor product of the two subsystem spaces (see Gel’fand and
Vilenkin (1964), Herbut and Vujičić (1976)).

To introduce the canonical entities, one writesAa in terms of its polar factors (Herbut
and Vujǐcić 1976):

|9〉12 ⇔ Aa = Uaρ
1/2
1 (9)

where

ρ1 ≡ Tr2 |9〉12〈9|12 (10)

is the reduced statistical operator, physically the state, of the first subsystem. The operator
Ua, the antilinear so-called correlation operator, maps the rangeR(ρ1) (⊆ H1) of ρ1 onto
that of ρ2 (the symmetrically defined reduced statistical operator or state of the second
subsystem). Finally, ‘Tr2’ denotes the partial trace inH2.

Opposite-subsystem eventsE1 andF2 in a given state|8〉12 satisfying

(E1 ⊗ 1)|8〉12 = (1 ⊗ F2)|8〉12 (11)

are called twin events (cf Herbut and Vujičić (1976), Vujǐcić and Herbut (1984)) on account
of the following two physical properties:

(i) The eventsE1 andF2 have the same probability of occurrence in|8〉12: 〈8|(E1 ⊗
1)|8〉12 = 〈8|(1 ⊗ F2)|8〉12.

(ii) The ideal occurrence (i.e. occurrence in ideal measurement) ofE1 or of F2 in the
state|8〉12 converts this state into one and the same state:

(E1 ⊗ 1)|8〉12/〈8|(E1 ⊗ 1)|8〉1/2
12 = (1 ⊗ F2)|8〉12/〈8|(1 ⊗ F2)|8〉1/2

12 .

Properties (11), (i) and (ii) generalize to a general (mixed or pure) state:

(E1 ⊗ 1)ρ12 = (1 ⊗ F2)ρ12 (12)

(i ′) Equal probability:

Tr12(E1 ⊗ 1)ρ12 = Tr12(1 ⊗ F2)ρ12

(ii ′) Equal change-of-state:

(E1 ⊗ 1)ρ12(E1 ⊗ 1)/Tr12(E1 ⊗ 1)ρ12 = (1 ⊗ F2)ρ12(1 ⊗ F2)/Tr12(1 ⊗ F2)ρ12

(we have also utilized the adjoint of condition (12)).

Definition. We shall also call two opposite-subsystem eventsE1 and F2 twin events
(projectors) in the case of a general (mixed or pure) stateρ12 if algebraic condition (12)
(reducing to (11) in the case of a pure state) is satisfied.
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3. Mutual state-dependent implication of same-subsystem events

Theorem 1. Let ρ12 be an arbitrary statistical operator in a composite-system state space
H1 ⊗H2, let ρi ≡ Trj ρ12, i, j = 1, 2, i 6= j , be the reduced statistical operators implied by
ρ12, and letBi , be a given Boolean subalgebra of the quantum logicP(Hi ) of subsystem
i, i = 1, 2. Then

∀Ei, Fi ∈ Bi : Ei ∼ρ12 Fi (13)

i.e. two same-subsystem events state-dependently imply each other if and only if, in terms of
the range projectorsQi of ρi ,

EiQi = FiQi (14)

are valid,i = 1, 2.

Proof. (a) Let (13) be valid. Then, both

Ei(1 − Fi) 6 (1 −Qi) and (1 − Ei)Fi 6 (1 −Qi) (15a, b)

hold true (cf (2) and (4a)). On the one hand, the identityEi = EiFi + Ei(1 − Fi)

gives EiQi = EiFiQi + Ei(1 − Fi)Qi . On the other hand, (15a) actually means that
Ei(1 − Fi) = Ei(1 − Fi)(1 −Qi), which gives 0= Ei(1 − Fi)Qi . Altogether, it follows
thatEiQi = EiFiQi . The symmetric argument (in conjunction with the commutativity of
Ei andFi) leads toFiQi = EiFiQi . Hence (14) is valid. (b) We assume the validity of
(14). One has alwaysEi(1 − Fi)(1 −Qi) = Ei − EiQi − EiFi + EiFiQi . Relation (14)
allows us to replaceFiQi by EiQi , implying

Ei(1 − Fi)(1 −Qi) = Ei(1 − Fi).

This is the explicit form of (15a). The symmetrical argument establishes (15b). According
to (2) and (4a), (13) is then valid. �

Corollary 1. In the notation of theorem 1, if one hasEi 6 Qi , Fi 6 Qi , thenEi ∼ρ12 Fi
if and only if Ei = Fi , i = 1, 2.

Corollary 2. If [Ei, ρi ] = 0, one has

∀Ei ∈ Bi Ei ∼ρ QiEi12 i = 1, 2.

(Note that here also [Ei,Qi ] = 0 since (1 − Qi) is the characteristic projector ofρi
corresponding to the characteristic values zero.)

Corollary 3. In view of lemma 1 and theorem 1, we can say that first-subsystem events
imply each other state-dependently according toρ12 if and only if they do so according to
ρ1, i.e.

(B1 ⊗ 1)/1ρ12 = (B1/1ρ1)⊗ 1 (16)

and symmetrically for the second subsystem.

Corollary 4. If [Bi , ρi ] = 0, then each equivalence class in(Bi/1ρi ) can be written as

{E′
i + E′′

i : fixed E′
i 6 Qi, all E′′

i 6 (1 −Qi)} i = 1, 2.

More light is thrown on the ramifications of theorem 1, and especially on corollaries 3
and 4, by the following result.
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Lemma 2. One has(E1 ⊗ 1) 6 (1 − Q12), whereE1 is an arbitrary projector inH1,
andQ12 is the range projector of an arbitrary given statistical operatorρ12, if and only if
E1 6 (1 −Q1), whereQ1 is the range projector ofρ1 ≡ Tr2 ρ12. The symmetrical result
(obtained by interchanging the indices 1 and 2) is also valid.

Before we prove lemma 2, we establish an auxiliary result.

Lemma 3. If E andQ are two projectors andρ is a statistical operator such thatQ is its
range projector, thenE 6 (1 −Q) is equivalent to

Eρ = 0. (17)

(We had the special caseρ ≡ |φ〉〈φ| of this in (4b) above.)

Proof. (a) The assumed inequality actually claims thatE = E(1 − Q). Since always
Eρ = EQρ, (17) follows.

(b) We assume the validity of (17). Letρ = ∑
i ri |i〉〈i| be a spectral form ofρ, ∀i:

ri > 0. ApplyingE to the characteristic relationρ|i〉 = ri |i〉, and taking into account (17),
one obtains:∀i : E|i〉 = 0. Hence,E(1 −Q) = E(1 − ∑

i |i〉〈i|) = E, i.e. E 6 (1 −Q)

as claimed.

Proof of lemma 2. (a) Assuming(E1 ⊗ 1) 6 (1 −Q12), we have, according to lemma 3,
(E1 ⊗ 1)ρ12 = 0. ThenE1ρ1 = E1 Tr2 ρ12 = Tr2(E1 ⊗ 1)ρ12 = 0. (We made use of
a partial-trace identity, cf the first relation in (19) below.) This implies, on account of
lemma 3,E1 6 (1 −Q1).

(b) AssumingE1 6 (1−Q1), we haveE1ρ1 = 0 (cf theorem 3). Then alsoE1ρ1E1 = 0.
Hence,

Tr2(E1 ⊗ 1)ρ12(E1 ⊗ 1) = 0

(here we also utilized the last partial-trace identity in (19) below). This implies Tr12(E1 ⊗
1)ρ12(E1 ⊗ 1) = 0. A positive operator has zero trace only if it is zero. Hence,
(E1 ⊗ 1)ρ12(E1 ⊗ 1) = 0. A lemma of L̈uders (1951) claims that ifC†BC = 0, whereB is
positive andC linear, thenBC = 0. In our case,(E1 ⊗ 1)ρ12 = 0 or (E1 ⊗ 1) 6 (1−Q12)

(cf lemma 3). �

4. Mutual state-dependent implication of opposite-subsystem events

Theorem 2. Assuming the notation of theorem 1, two opposite-subsystem events
(projectors)E1 andF2 imply each other state-dependently according to a given composite-
system state (statistical operator)ρ12 if and only if (12) is valid, i.e. if and only ifE1 and
F2 are twin eventsin the stateρ12.

Proof. (a) We assume(E1 ⊗ 1) ∼ρ12 (1 ⊗ F2). In view of (2), (4a) and lemma 3, this
amounts to

((1 − E1)⊗ 1)(1 ⊗ F2)ρ12 = 0 = (E1 ⊗ 1)(1 ⊗ (1 − F2))ρ12. (18)

Hence, one obtains

(1 ⊗ F2)ρ12 = (E1 ⊗ F2)ρ12 = (E1 ⊗ 1)ρ12.

(b) Relation (12) implies

((1 − E1)⊗ 1)ρ12 = (1 ⊗ (1 − F2))ρ12

and then also (18). �
An important necessary condition for twin events (in the general case) is their

compatibility with the corresponding states. More precisely, one has the following result.
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Proposition. If E1 andF2 are twin events (projectors) with respect to a given composite-
system state (statistical operator)ρ12, i.e. if (12) is valid, then

[E1, ρ1] = 0 [F2, ρ2] = 0

i.e. the events are compatible with the corresponding statesρi ≡ Trj ρ12 (i, j = 1, 2, i 6= j)

of the subsystems.

Proof. We make use of the following easily checked partial-trace identities:

A1 Tr2B12 = Tr2(A1 ⊗ 1)B12 Tr2(1 ⊗ C2)B12 = Tr2B12(1 ⊗ C2) = (Tr2B12)C2. (19)

Thus, utilizing (12) and its adjoint, one derives

E1 Tr2 ρ12 = Tr2(E1 ⊗ 1)ρ12 = Tr2(1 ⊗ F2)ρ12 = Tr2 ρ12(1 ⊗ F2)

= Tr2 ρ12(E1 ⊗ 1) = (Tr2 ρ12)E1.

The symmetrical argument completes the proof. �

Theorem 3. Let |8〉12 be an arbitrary state vector of a composite two-subsystem system.
Let ρi ≡ Trj |8〉12〈8|12, i, j = 1, 2, i 6= j , be the reduced statistical operators withQi ,
i = 1, 2 as the corresponding range projectors. Let, further,Ua be the antilinear correlation
operator implied by|8〉12 (cf (9)). Let, finally, B1 be a given Boolean subalgebra of
first-subsystem events, andB2 one of second-subsystem events such that

B2 ⊇ {F ′
1 + F ′′

2 : F ′
2 = UaE1U

−1
a Q2, E1 ∈ B1, [E1,Q1] = 0;F ′′

2 6 (1 −Q2)}
andB12 as the Boolean subalgebra ofP(H1 ⊗H2) spanned byB1 × B2, i.e. as the minimal
structure of this kind containing the latter set. Then, one has

(E1 ⊗ 1) ∼|8〉12 (1 ⊗ F2) E1 ∈ B1, F2 ∈ B2 (20)

if and only if both

[E1, ρ1] = 0 (21)

and

F ′
2 ≡ F2Q2 = UaE1U

−1
a Q2 (22)

are valid.

Proof. (a) We assume that (20) is valid. Then, according to theorem 2, the events
E1 and F2 are twins regarding|8〉12. Further, according to the proposition,E1 and ρ1

commute. Hence, we can take a characteristic orthonormal basis{|φm〉1 : ∀m} of ρ1 and
simultaneously ofE1 spanning the rangeR(Q1). Let the corresponding characteristic values
be {rm : ∀m} and{em : ∀m} respectively. Then,{(Ua|φm〉1)2 : ∀m} is an orthonormal basis
spanning the rangeR(Q2) (cf Herbut and Vujǐcić (1976)). Besides,|8〉12 can be written in
the so-called Schmidt canonical form in terms of the introduced entities (Herbut and Vujičić
1976, relation (32)):

|8〉12 =
∑
m

r1/2
m |φm〉1 ⊗ (Ua|φm〉1)2. (23)

We replace this in (11), and we take the partial scalar product with〈φm|1 (with a fixed
but arbitrarym value). One obtains:

∀m : em(Ua|φm〉1)2 = F2(Ua|φm〉1)2
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(r1/2
m , which is necessary positive, cancels on both sides). On the other hand, one obviously

has

UaE1U
−1
a (Ua|φm〉1)2 = em(Ua|φm〉1)2.

Hence,F2 = UaE1U
−1
a in R(Q2), i.e. (22) is valid.

(b) Assuming the validity of (21) and of (22), and utilizing (23) with{|φm〉1 : ∀m} as
a common characteristic basis ofρ1 and ofE1, one obtains

(1 ⊗ F2)|8〉12 =
∑
m

r1/2
m em|φm〉1 ⊗ (Ua|φm〉1)2.

On the other hand, on account of (23),(E1 ⊗ 1)|8〉12 gives the same. ThusE1 andF2 are
twin events, and, according to theorem 2, they imply each other state-dependently according
to |8〉12.
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Herbut F and Vujǐcić M 1976Ann. Phys.96 382
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