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Abstract. Let p12 be an arbitrary given composite-system state (statistical operator). It is
shown that same-subsystem events imply each other state-dependently accoyding tnd

only if they act equally in the range of the corresponding subsystem state (reduced statistical
operator). Opposite-subsystem events imply each other in the same way if and only if they
are twin events, i.eE1p12 = Fop12. If p12 is a pure state, it is shown that the anti-unitary
correlation operator also plays a decisive role in the latter implication.

1. Introduction

To begin with, we give a short summary of the concepts of the state-dependent implication
in quantum logic that are required for this investigation.

Let H be the state space of a quantum system, an®{&t) be the set of all events
(projectors) inH. A (partial) order (i.e. a binary relation that is reflexive, transitive and
antisymmetric (see Birkhoff 1940)) is defined M(H) as follows

E<F if EF = E. (1)

Equivalently, in terms of the ranges one hR&E) C R(F).

Since the projectors can also be interpreted as propositions, oné’¢allsa quantum
logic, having in mind that it is a partially ordered set witd’‘given by (1), the so-called
absolute implicationcontained in it.

Any other implication is a relative one. It is a pre-order (a binary relation that is
reflexive and transitive, cf Birkhoff (1940)) in one of the Boolean subalgeBrag P (H),

i.e. in the domain of definition of the relative implication. (For the necessity of restriction
to B see Herbut (1994).) Any relative implication is defined by specifying an ideial 3,
and by taking the corresponding factor algebraA (cf Herbut 1994, 1995).

The equivalence relation (a binary relation that is reflexive, transitive and symmetric)
‘~A’ redefines the classes in the sense that two events are equivalent if and only if they
belong to the same class. In other words, denoting Blythe equivalence class (element
of B/A) to which E belongsYE € B, [E] = {F : F ~A E}. One has

E ~, F, E,.FeB if both EFt e A and EtFenA )

whereE+ =1— E etc.
Therelative implication* <, can be entirely defined in terms of the equivalence relation
‘~A’ given by (2) and the absolute implicatiorc* as follows:

E<AF, E,FeB, f3GeB:G~x E, andidH e B: H ~5 F, andG < H. (3a)
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An important connection between-,’ and ‘<,’ is given by
E~xF, E,FehB, ifandonly if bothE <, F andF <, E (3b)

(see Herbut (1994)).

In this study we will be mostly interested in-’, and we will refer to it as the relation
of mutual (relative) implication

The special case ddtate-dependent implicatioh<,’ is determined by any quantum
state (statistical operatop) in H. Let Qo be the null projector ofp. Then

A,={E:Ee€B,E< Qo (4a)
is an ideal inB, and by definition

"<y =%, ()
(see Herbut (1994, 1995)). If the quantum statis pure, i.e.0 = |¢)(¢|, then equivalently

Aigy = {E : E € B, E|¢) = 0}. (4b)

It is noteworthy that in general the quantum state is a mixture of pure states:
P = an|wn)(1/fn| (6)
n

but the state-dependent implicatiod,” is determined only by its null projector

Qo=1-" [vu)(¥ul ™

(it is here assumed that (6) is a spectral formppbtherwise, (6) can be more general).
Now we derive a result that we will make use of below.

Lemma 1 Let p be a state (statistical operator) affda Boolean subalgebra of the
guantum logicP(H) of a quantum system. Then two events (project@sy’ € B imply
each other state-dependently accordingta.e. E ~, F, if and only if

EQ=FQ (8)
where Q is therange projectorof p.

Proof.  (a) We assume state-dependent equivalence ahd F according top. In view
of (2) and (4), this takes the following explicit form:

EQA-F)(1-Q)=E1-F)
1-E)FA-Q)=A—-E)F.

These relations simplify down to
EQ=EFQ FQ=EFQ

implying (8).
(b) We assume the validity of (8). ThehQ = EF Q, and, reading the above argument
backwards, i.e. adding the required terms, we obtain

El-F)1-Q)=E(1l-F)

or symbolically,EF+ < (1— Q). Symmetrically, (8) implies Q = EF Q, and the addition
of the required terms leads o' F < (1— Q). In view of (2) and (4), we haveE ~, F.O
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2. A summary of the canonical entities of distant correlations in mixed and pure
composite-system states

Now, we outline some basic concepts of canonical distant-correlation theory, some of which
were developed in previous work (Herbut and ¥igi1976, Vujtic and Herbut 1984).

Any two-subsystem (e.g. two-particle) composite-system $taye, (e (H1® Hz)) can
be equivalently expressed as an antilinear Hilbert—Schmidt opeAgtonapping the state
space (Hilbert spacéy; of the first subsystem into that of the other. Namely, these operators
form one realization of the tensor product of the two subsystem spaces (see Gel'fand and
Vilenkin (1964), Herbut and Vu§i€¢ (1976)).

To introduce the canonical entities, one writég in terms of its polar factors (Herbut
and Vujiic 1976):

|\Il)12 < Aa = Uapi/z (9)
where
p1=Tro [W)12(W|12 (10)

is the reduced statistical operator, physically the state, of the first subsystem. The operator
U,, the antilinear so-called correlation operator, maps the rage) (C Hi) of p; onto
that of p, (the symmetrically defined reduced statistical operator or state of the second
subsystem). Finally, ‘B denotes the partial trace iH..
Opposite-subsystem events and F» in a given statg®);, satisfying
(E1®@D[P)12=(1® F2)|P)12 (11)

are called twin events (cf Herbut and \&ifi (1976), Vujti¢ and Herbut (1984)) on account
of the following two physical properties:

(i) The eventsE; and F» have the same probability of occurrence|®),: (P|(E1 ®
D[®@)12 = (P|(1® F2)|P)12.

(ii) The ideal occurrence (i.e. occurrence in ideal measuremeng)y afr of F» in the
state|®)1, converts this state into one and the same state:

(E1® 1)|®)1o/(®1(E1 ® DID)S = (1® F2)|®)12/(DI(1® Fp)| D)7y
Properties (11), (i) and (ii) generalize to a general (mixed or pure) state:
(E1® Dp12 = (1® F2)p12 (12)
(i") Equal probability:
Tri2(E1 ® 1)p12 = Triz(1® F2)p12
(ii") Equal change-of-state:
(E1®@ 1D p12(E1 ® 1)/ Tria2(E1 ® 1)p12 = (1 ® F2)p12(1 ® F2)/ Tri2(1® F2)p12
(we have also utilized the adjoint of condition (12)).
Definition We shall also call two opposite-subsystem evefitsand F, twin events

(projectors) in the case of a general (mixed or pure) spatef algebraic condition (12)
(reducing to (11) in the case of a pure state) is satisfied.
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3. Mutual state-dependent implication of same-subsystem events

Theorem 1 Let p;, be an arbitrary statistical operator in a composite-system state space
H1®Ho, letp; = Trj p12, i, j = 1,2,i # j, be the reduced statistical operators implied by
p12, and let;, be a given Boolean subalgebra of the quantum Igg)e{;) of subsystem

i,i =1,2. Then

VE;,F; € Bi . E; ~,, F; (13)
i.e. two same-subsystem events state-dependently imply each other if and iongriins of
the range projectorg; of p;,

E:Qi=F 0, (14)
are valid,i =1, 2.

Proof. (@) Let (13) be valid. Then, both
E(1-F)<@1-0) and A-EH)F,<(1-0)) (1%a, b)

hold true (cf (2) and (). On the one hand, the identit]; = E;F; + E;(1 — F})
gives E;Q; = E;F;Q; + E;(1 — F;)Q;. On the other hand, (& actually means that
E(1-F,)=E;(1- F)(1- Q;), which gives 0= E;(1 — F;)Q;. Altogether, it follows
that E; Q; = E; F; Q;. The symmetric argument (in conjunction with the commutativity of
E; and F;) leads toF; Q; = E;F; Q;. Hence (14) is valid. (b) We assume the validity of
(14). One has alwayg;(1 — F;)(1— Q;) = E; — E;Q; — E;F; + E; F; Q;. Relation (14)
allows us to replace; Q; by E; Q;, implying

E(1-F)1-0)=EQ0-F).
This is the explicit form of (18). The symmetrical argument establisheshjl15According
to (2) and (4), (13) is then valid. O

Corollary 1. In the notation of theorem 1, if one h# < Q;, F; < Q;, thenE; ~,,, F;
ifandonly if E;, = F;,i =1, 2.
Corollary 2. If [E;, p;] = 0, one has

VE,' € Bi Ei ~p QiEij_z i = 1, 2.

(Note that here alsoH;, Q;] = 0 since (1 — Q;) is the characteristic projector qf;
corresponding to the characteristic values zero.)

Corollary 3. In view of lemma 1 and theorem 1, we can say that first-subsystem events
imply each other state-dependently accordingpif and only if they do so according to
01, i.e.

(Bl ® 1)/Ap12 = (Bl/Apl) ®1 (16)
and symmetrically for the second subsystem.

Corollary 4. If [B;, p;] = 0, then each equivalence class(if{/A,,) can be written as
{E!+ E :fixed El < Q;, all E! <(1— 0y} i=1,2

More light is thrown on the ramifications of theorem 1, and especially on corollaries 3
and 4, by the following result.
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Lemma 2 One has(E; ® 1) < (1 — Q12), where E; is an arbitrary projector irf;,
and Q;, is the range projector of an arbitrary given statistical operater if and only if
E1 < (1 - Q1), where Q; is the range projector gb; = Trp p12. The symmetrical result
(obtained by interchanging the indices 1 and 2) is also valid.

Before we prove lemma 2, we establish an auxiliary result.

Lemma 3 If E andQ are two projectors angd is a statistical operator such thatis its
range projector, thelt < (1 — Q) is equivalent to

Ep=0. a7
(We had the special cage= |¢)(¢| of this in (4b) above.)

Proof. ~ (a) The assumed inequality actually claims tliat= E(1 — Q). Since always
Ep = EQp, (17) follows.

(b) We assume the validity of (17). Let= >".ri){i| be a spectral form op, Vi:
r; > 0. Applying E to the characteristic relatiop|i) = r;|i), and taking into account (17),
one obtains:vi : Eli) = 0. Hence,E(1—- Q) = E(1—- ), |i){i) =E,ie.E< (11— Q)
as claimed.

Proof of lemma 2 (a) Assuming(E1 ® 1) < (1— Q12), we have, according to lemma 3,
(E1®@ D)p12 = 0. ThenEp; = E1Trop1o = Tra(E1 ® 1)p12 = 0. (We made use of
a partial-trace identity, cf the first relation in (19) below.) This implies, on account of
lemma 3,E; < (1— 0)1).

(b) AssumingE; < (1—Q1), we haveE;p; = 0 (cf theorem 3). Then alsB;p;E; = 0.
Hence,

Tro(E1 ® Dp12(E1®1) =0

(here we also utilized the last partial-trace identity in (19) below). This implieg Bt ®
Dp2(E1 ® 1) = 0. A positive operator has zero trace only if it is zero. Hence,
(E1® 1) p12(E1®1) = 0. A lemma of lilders (1951) claims that & BC = 0, whereB is
positive andC linear, thenBC = 0. In our case(E; @ D)p1o=00r(E1®1) < (1— 012)
(cf lemma 3). O

4. Mutual state-dependent implication of opposite-subsystem events

Theorem 2 Assuming the notation of theorem 1, two opposite-subsystem events
(projectors)E; and F», imply each other state-dependently according to a given composite-
system state (statistical operatr), if and only if (12) is valid, i.e. if and only ifE£; and

F, aretwin eventsin the stateo;,.

Proof. (a) We assuméE; ® 1) ~,,, (1 ® F). In view of (2), (4) and lemma 3, this
amounts to
(1-E)®@DA® F)p12=0=(E1®@1D(1® (1— F2))p12. (18)
Hence, one obtains
(1® F)p12 = (E1 ® F2)p12 = (E1 Q@ 1) p12.
(b) Relation (12) implies
(1-E)®Dpr2=(1® (1— F2)p12

and then also (18). O
An important necessary condition for twin events (in the general case) is their
compatibility with the corresponding states. More precisely, one has the following result.
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Proposition If E; and F, are twin events (projectors) with respect to a given composite-
system state (statistical operat@r), i.e. if (12) is valid, then

[E1, p1] =0 [F2, 0] =0

i.e. the events are compatible with the corresponding sgatesTr; p12 (i, j = 1,2,i # j)
of the subsystems.

Proof. ~ We make use of the following easily checked partial-trace identities:
A1 Try Bio =Tra(A1 ® 1) By Tro(1® C2) B12 = Trz B12(1® Cp) = (Trz B12)Ca. (19)
Thus, utilizing (12) and its adjoint, one derives

E1Trop1o=Tra(E1 ® Dp12 = Tro(1® Fo)p12 = Tr2 p12(1 ® F2)
= Trop12(E1 ® 1) = (Trz2 p12) E1.

The symmetrical argument completes the proof. O

Theorem 3 Let |®);1, be an arbitrary state vector of a composite two-subsystem system.
Let p; = Tr; |®)12(Pl12, i, j = 1,2, i # j, be the reduced statistical operators wii,

i =1, 2 as the corresponding range projectors. Let, furtbigrbe the antilinear correlation
operator implied by|®)., (cf (9)). Let, finally, B; be a given Boolean subalgebra of
first-subsystem events, ait} one of second-subsystem events such that

By D (F{+ F) . Fy=U,E:U;*Q2, E1 € By, [E1, Q1] = 0; Fy < (1 — Q2)}

and B, as the Boolean subalgebraBfH; ® H,) spanned by3; x By, i.e. as the minimal
structure of this kind containing the latter set. Then, one has

(E1®1) ~ay, (1Q F) EieBi, F,eB (20)
if and only if both

[E1, p1] =0 (21)
and

Fy= F,0,=U,E:U; Q5 (22)
are valid.

Proof. (a) We assume that (20) is valid. Then, according to theorem 2, the events
E1 and F, are twins regarding®);,. Further, according to the propositiof,; and p;
commute. Hence, we can take a characteristic orthonormal basis, : Vm} of p; and
simultaneously of; spanning the rangB(Q;). Let the corresponding characteristic values
be{r, : Vm} and{e,, : Vm} respectively. Then{(U,|p,)1)2 : Vm} is an orthonormal basis
spanning the rang®(Q») (cf Herbut and Vuigi¢ (1976)). Besideg®)1, can be written in

the so-called Schmidt canonical form in terms of the introduced entities (Herbut ar@icVuiji
1976, relation (32)):

[©)12="Y_ r2pm)1 ® (Ualpm)1)2- (23)

m

We replace this in (11), and we take the partial scalar product @ity (with a fixed
but arbitrarym value). One obtains:

Vm : em(Ua|¢)m)1)2 = FZ(Ua|¢m>l)2
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(rnl/z, which is necessary positive, cancels on both sides). On the other hand, one obviously
has

U ErU; Ualdm)1)2 = en(Ualpm)1)2-

Hence,F, = U,E1U; Y in R(Q»), i.e. (22) is valid.
(b) Assuming the validity of (21) and of (22), and utilizing (23) withp,,)1 : Vm} as
a common characteristic basis pf and of E1, one obtains

1® F)| P12 =Y r/%enldm)1 ® Ualdn)1)a:

On the other hand, on account of (28k; ® 1)|®);, gives the same. ThuB; and F, are
twin events, and, according to theorem 2, they imply each other state-dependently according
to |D)1>.
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